Qpi clock ratio что это
Перейти к содержимому

Qpi clock ratio что это

  • автор:

QPI frequency

Computer Hope

Short for quickpath interconnect, the QPI frequency or QPI Clock is a technology designed to replace the FSB (front-side bus) on a computer motherboard. Intel developed it to compete with HyperTransport. The basic QPI connects one or more processors to one or more I/O (input/output) hubs, allowing all the components in the computer to communicate with each other over the network. The initial release of QPI frequency can transfer 25.6 GB/s with a theoretical bandwidth of 1600 MHz.

Computer users interested in overclocking their computer may see an option like the example picture below in the CMOS setup that enables them to adjust their QPI frequency. We recommend leaving this setting at Auto or the default settings. Adjusting this setting to make the computer faster makes no noticeable difference.

Особенности системной шины QPI.

Системная шина играет ключевую роль во взаимодействии CPU с остальными компонентами компьютера. Intel разработала для своих новых многоядерных процессоров скоростной и экономичный интерфейс QPI. Последовательная шина QPI позволила ликвидировать многие «узкие места. В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QPI.

Основное достоинство нового интерфейса QPI – это сочетание высокой пропускной способности — до 15 Гбит/с и низкого энергопотребления (не более 5,0 мВт на каждый гигабит в секунду при пропускной способности 15 Гбит/с). При скорости передачи данных 5 Гбит/с новый интерфейс Intel обладает уровнем энергопотребления не более 2,7 мВт на каждый гигабит в секунду. Эти результаты сегодня являются рекордными с точки зрения эффективности работы современных приёмников данных Теоретически, Intel может повысить пропускную способность существующих интерфейсов в три раза, довольствуясь только 25% уровня энергопотребления нынешних интерфейсов.

Главный параметр системы, влияющий на частоту практически всех узлов системы – частота тактового генератора — Host Clock Frequency (при конфигурировании задаётся на первом же экране раздела «Performance»). Штатное значение этой частоты – 133 МГц, однако некоторые платы предлагают широкие возможности для её увеличения, например, до 240 МГц (пределы медных линий см. на рис. 1).

Частота шины QPI формируется за счет умножения определенного коэффициента на частоту тактового генератора, равную в номинале 133 МГц. Ее также называют опорной частотой шины QPI — QPI bclk или просто Bclk (есть, например, специальная утилита «CPU-Z», которая определяет ее как Bus Speed). За счет Bclk формируются частоты ядер процессора, кэш-памяти, контроллера памяти и частота системной памяти.

Таким образом, в современных системах на процессорах Intel в Core i7 частота 133 МГц – это просто частота тактового генератора, формирующего все остальные частоты.

Аналогичным образом формируется и частота шины памяти, которая использует свой собственный набор множителей.Для частоты шины памяти процессоры Core i7 предложат несколько доступных множителей. Например, процессор Core i7-965 Extreme Edition предлагает выбор между 6x, 8x, 10x и 12x, что означает поддержку этим процессором памяти DDR3-800/1067/1333/1600 SDRAM.

Интерфейс QPI, связывающий процессор с северным мостом (и другими процессорами см. рис. 2), также использует эту частоту в качестве базовой, умножая её на свой собственный коэффициент. Частота интерфейса QPI будет варьироваться на разных моделях CPU. Так, в Core i7-965 Extreme Edition эта шина работает на частоте 3,2 ГГц, в то время как на Core i7-940 и i7-920 её частота понижена до 2,4 ГГц.

Что касается возможности разгона шины QPI, то почти все процессоры будут ею обладать в полной мере. Множитель частоты шины QPI — от 4x до 64x (но процессоры Core i7 920 -2.66 ГГц и Core i7 940 — 2.93 ГГц не будут позволять повышать множитель, определяющий тактовую частоту ядер и, соответственно, технология Intel Dynamic Speed Technology ими тоже поддерживаться не будет).

Частота шины QPI для процессоров Intel Core i7-920 и Core i7-940 составляет 2,4 ГГц, что эквивалентно пропускной способности 4800 мегатранзакций в секунду (или 4,8 ГТ/с). Для Core i7-965 EE это значение соответствует 3,2 ГГц или 6,4 ГТ/с. Зная частоту QPI можно высчитать коэффициент умножения шины у каждого из процессоров: для Core i7-920 и Core i7-940 он равен 18, для Core i7-965 EE — 24. Но частота шины Quick Path Interconnect не единственная проблема, с которой можно будет столкнуться при разгоне Core i7. При разгоне CPU путем повышения Bclk будут расти частоты всех блоков процессора, шины QPI и памяти, что может нарушить их стабильную работу.

В новых CPU кэш третьего уровня и контроллер памяти (данная часть процессора называется Uncore) работает на отличной от процессора частоте (по рекомендации Intel, частота этих блоков должна быть в два раза выше эффективной частоты памяти). Данный параметр изменяется в настройках BIOS Setup материнской платы (коэффициентом или выбором частоты). Отслеживать значения Uncore можно, например, при помощи все той же утилиты CPU-Z — за это отвечает параметр NB Frequency в закладке Memory.

Значительного повышения эффективности новой шины удалось добиться за счёт динамического управления частотой и напряжением принимающего и передающего чипов, а также некоторых других нововведений. Кроме того, компания также разработала чип-диспетчер, который позволяет аппаратно распределять потоки между ядрами процессора. Производительность симулированного 64-ядерного процессора при его помощи удалось повысить в два раза. Все эти новые разработки Intel приведут к появлению еще более эффективных и экономичных многоядерных процессоров. Новая технологии приёма/передачи данных, которая будет использоваться в многопроцессорных системах следующего поколения, требующих не только повышенной пропускной способности канала ввода/вывода, но и более эффективного с точки зрения потребляемой мощности интерфейса передачи информации.

Шина QPI, является аналогом шины HyperTransport от AMD, и тоже предназначена для связи процессора с другими компонентами. Она призвана обеспечить согласованный обмен данными между небольшими группами локальных процессоров, а также взаимодействие между банками памяти (даже не обязательно одного типа) в распределенных системах, включающих не более 128 процессоров. QPI обеспечивает меньшие задержки и более высокую производительность, по сравнению с HyperTransport.

Шина QuickPath дебютировала в рамках серверной платформы Tylersburg, которая использует процессоры поколения Nehalem с разделяемым кэшем третьего уровня и поддержкой «виртуальной многоядерности», в частности, система на базе двух четырёхъядерных процессоров сможет имитировать работу шестнадцати процессорных ядер.

Ключевой особенностью новой архитектуры является применение концепции масштабируемой разделяемой памяти (scalable shared memory). В рамках новой архитектуры каждый CPU будет иметь собственную выделенную память, к которой он будет обращаться напрямую, через свой интегрированный контроллер памяти.

В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QuickPath Interconnect. Как и шина HyperTransport, применяемая в процессорах компании AMD, QPI будет использовать последовательную связь по схеме «точка-точка» (point-to-point), что обеспечит высокую скорость при малой латентности. Итак, основными ключевыми характеристиками Intel QuickPath Architecture являются:

— производительность каналов QuickPath Interconnect до 6,4 гигатранзакций в секунду (благодаря чему общая пропускная способность может достигать 25,6 Гбайт/сек)

— QPI уменьшает количество служебной информации, необходимой для функционирования многопроцессорных систем (что, соответственно, позволяет повысить скорость передачи полезных данных);

— реализация контроля при помощи циклического избыточного кода (CRC) и повторной передачи при обнаружении ошибок на канальном уровне (что позволяет обеспечить целостность данных без ощутимого влияния на производительность);

— возможность реализации высокоуровневых функций обеспечения надежности, готовности и удобства обслуживания (RAS, Reliability, Availability and Serviceability) благодаря реконфигурации каналов в случае повреждения отдельных участков, поддержке «горячей замены». При нарушении сигнала в одной или нескольких из линий контроллер шины может автоматически перенастроить QPI на ширину 15 и даже 5 бит, не теряя работоспособности, таким образом, серверы, например, на базе мощных процессоров Xeon 5500 будут обладать повышенной устойчивостью к сбоям шины (рис. 3). При организации шины с различной шириной линий, управ­лением потоком данных занимает­ся специальный агент QPI, который распределяет поток данных перед тем, как от­править его по различным физи­ческим линиям, а при приеме аналогичный агент собирает разные потоки данных в один (рис. 3).

Рис. 3. Пример конфигурирования 20 каналов в четыре группы по 5 каналов

В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QPI (рис. 2). Шина QPI использует последовательную связь по схеме «точка-точка» (point-to-point), что обеспечивает высокую скорость при малой латентности.

Рис. 4. Архитектурные особенности процессоров Core i7 с шиной QPI

Серверные модели оборудованы двумя (и более) линиями QPI (рис. 4), что позволяет выделить всем критичным направлениям (например, связь двух процессоров между собой и каждого из них с северным мостом) по собственному соединению. В любом случае, производительности QuickPath Interconnect вполне достаточно, чтобы обеспечить нормальную работу платформ с несколькими CPU. Интерфейс QPI в 2-3 раза эффективнее и к тому же не обременен взаимодействием с оперативной памятью (этим занимается встроенный контроллер памяти DDR3).

Рис. 5. Принципы организации шины QuickPath Interconnect (каждую отдельную дифференциальную пару называют линией. 20 линий для обмена плюс линии синхронизации в каждом направлении образуют 84-х контактный интерфейс)

Специальный последовательный интерфейс с топологией точка-точка, именованный как QPI (QuickPath Interconnect) с технической точки зрения представляет собой два 20-битных соединения, ориентированных на передачу данных в прямом и обратном направлении (рис. 5). Из 20 битного соединения 16 бит предназначаются для передачи данных, оставшиеся четыре – носят вспомогательный характер, они используются протоколом и коррекцией ошибок. Таким образом, QPI является последовательной, высокоскоростной двунаправленной шиной. Ее ширина в каждую сторону (передача и прием) составляет по 20 бит (20 отдельных пар линий), при этом 16 бит отводится для передачи данных, две линии зарезервированы для передачи служебных сигналов и еще две — для передачи кодов коррекции ошибок CRC. C учетом еще двух пар линий, используемых для сигналов синхронизации (одна на прием и одна на передачу), получаем, что шина QPI состоит из 42 пар линий, то есть является 84-контактной. Это соединение представляет собой пару из двух шин функционирующих в режиме полного дуплекса, снабженных задающей тактовую частоту линией.

Базовый физический уровень состоит из двойного симплексного канала, осуществляющего функции приемной и передающей пары (т. е. по сути реализован дуплексный коммуникационный канал). На физическом уровне шина об­разована двумя парами проводников: одна пара служит для передачи данных, а вторая — для их приема (рис. 6. Две такие пары позволяют организовать двунаправленную линию передачи данных, если полосы пропускания не­достаточно, то для того, что­бы обеспечить большую пропус­кную способность, поддержива­ется не одна, а несколько таких двунаправленных линий связи. Этот уровень интерфейса определяет операцию и особенности индивидуальных сигналов линий шины QPI.

Физический уровень содержит все необходимые схемы для выполнения интерфейсных операций обмена данными, включая драйвер и входные/входные буферы, параллельное-последо­вательное и последовательно-параллельное преобразование, схему(ы) ФАПЧ и схемs согласования импеданса. Кроме того, он включает также логиче­ские функции, связанные с инициализацией и поддержкой интерфейса.

Логическая часть физического уровня обеспечивает соединение со уровнем связи и управляет потоком информации между ними (вперед и назад). А также управляет инициализацией и конфигурированием канала связи и управляет шириной информационной магистрали в операции обмена.

Рис. 6. Общая блок-схема физического уровня

Физический интерфейс шины отличается простотой реализации, в нем используются низковольтные, дифференциальные сигналы (рис. 7). Для передачи сигналов используются две линии, по которым синхронно передается прямой и инверсный сигнал. Для мобильных систем могут использоваться сигналы снижающие энергопотребление шиной, на линиях шины обеспечивается низкий уровень перекрестных помех.

Рис. 7. Принципы физической реализации линий связи шины

Физический уровень разделен на две секции. Аналоговая (или электрическая) секция управляет передачей цифровых данных. Эта секция формирует соответствующие аналоговые уровни сигналов с надлежащим выбором времени относительно сигнала синхронизации и затем принимает сигналы данных на другом конце и преобразовывает их обратно в цифровые данные. Этот уровень ответственен за сигналы и специфические детали выполнения операции обмена между двумя агентами. Этот уровень непосредственно управляет передачей сигналов данных на проводах шины, включает электрические уровни, рассчитывая аспекты, и решает логические проблемы, возникающие при посылке и получении каждого бита информации по параллельным шинам. Передача сигналов в обе стороны выполняется на высокой скорости в дифференциальном виде по 20 отдельным парам в одном цикле шины, реализующем одну операцию обмена. Отдельная линия синхронизации сопровождает свой набор из 20 пар линий передачи данных.

Интерфейс Intel® QuickPath чтобы для обеспечения передачи всей номенклатуры сигналов одной шины QPI, работающей в ее полной ширине, на физическом уровне использует восемьдесят четыре линии и соответственно 84 контакта. В некоторых случаях, связь может осуществляться в половине или четверти ширины шины, например, чтобы уменьшить расход энергии или из-за отказов на линии. Единицу информации, переданной в каждой единице времени физическим слоем называют phit, который является акронимом для физической единицы. Например, каждый phit может содержать 20 бит информации. Типичные скорости передачи сигналов связи в текущих продуктах обеспечивают в операциях обмена в 6.4 GT/s для систем с короткими связями между компонентами, и 4.8 GT/s для более длинных связей, используемых в больших мультипроцессорных системах. Управ­лением потоком данных занимает­ся специальный «агент», который распределяет поток данных перед тем, как от­править его по различным физи­ческим линиям, а при приеме аналогичный агент собирает разные потоки данных в один.

Для обмена информацией между компонентами системы используются пакеты. Пакетная связь начинается на канальном уровне для реализации функций управления каналом. Паке­ты формируются для того, чтобы надежно перенести информацию от передающего к принимающему компоненту. Поскольку па­кеты передаются через соответствующие уровни, они дополняются вспомогательной информацией, необходимой для обработки пакета на соответствующем уровне. На принимающей стороне происходит обратный процесс, и пакет преоб­разовывается обратно, начиная с физического уровня и далее, до формата, в котором он может быть обрабо­тан принимающим устройством.

Рис. 8. Типовая обобщенная структура пакета и состав пакета для разных уровней

Физический уровень принимает с линий связи кадр проверяет его корректность и выделяет из него пакет. Физическим уровнем биты phits и биты контроля циклического избыточного кода не контролируются. Физический уровень объединяет phits в пакеты, и передает пакеты на уровень связи. Каждый пакет, состоит из 80 бит (рис. 8). Рис. 9 иллюстрирует возможности физического уровня передачи информации кадра по шине QPI.

Рис. 9. Физический уровень Intel® QPI (Phit) требует для передачи 20 физических линий передач.

Поддержка ассиметричных связей и хорошая масштабируемость по скорости, по ширине шины, частоте и направлению, позволяет разработчикам систем выбирать решение полностью соответствующее их задачам. Широкая полоса пропускания позволяет в проектируемых многопроцессорных системах легко добавлять новые высокопроизводительные компоненты. Использование шины QPI позволяет сократить время на разработку этих проектов, так как добавление в систему новых чипов не вызывает проблем.

Qpi clock ratio что это

Недавно приобрёл новый системник — GA-P55-UD3, core i5 660, DDR3 1+1, GV-R485ZL-512H (HD4850), HDD — 320. Первым делом, после установки ОС winXP-SP3, полез в БИОС, естественно с целью разгона. И тут столкнулся, не то что-бы с проблемой, просто непоняткой — в руководстве нарисована шина DMI, как я вычитал в интернете на платы с разъёмом LGA 1156 устанавливается именно она, а в настройках БИОС стоит- «QPI Clock Ratio» и «QPI Link Speed» причём всё активно и всё работает! И как это понимать? Объясните дураку, а то я немного отстал от жизни, раньше издевался над стареньким Прескоттом

Регистрация: 10.06.2009
Сообщений: 1,409
Репутация: 127

DMI соединяет процессор и чипсет.QPI находится внутри процессора.
http://www.overclockers.com.ua/memory/geil-ddr3-12800/ тут можно посмотреть

Последний раз редактировалось ДЯДЯ; 10.03.2010 в 22:12 .
Регистрация: 10.03.2010
Сообщений: 3
Репутация: 0

Ага, кое что проясняется, значит QPI — внутренняя шина процессора и её частота зависит от BCLK и множителя , чем выше частота QPI тем быстрее процессор общается с памятью и видюхой. А как работает DMI? Гнать я её не собираюсь, смысла нет, просто боюсь что разгон BCLK потянет за собой шину DMI, а это может привести к выходу из строя чипсета и устройств повешенных на него. Чёй-то я в БИОСе настроек DMI не нашёл

Регистрация: 10.06.2009
Сообщений: 1,409
Репутация: 127
Я полагаю,за DMI отвечает контроллер PCI-E, можно зафиксировать его на 100мгц или на Auto
Регистрация: 10.03.2010
Сообщений: 3
Репутация: 0
Сообщение от ДЯДЯ
Я полагаю,за DMI отвечает контроллер PCI-E, можно зафиксировать его на 100мгц или на Auto

Да, похоже именно так и есть, поскольку контроллер памяти, контроллер шины PCI-E, контроллер шины DMI и видео расположены в одном ядре, сорока пяти нанометровом. У него похоже свой, независимый от BCLK, тактовый генератор. В общем ставлю в PCI Express Frequensy 100Mhz и точка.
ДЯДЯ спасибо за консультацию.

« Предыдущая тема | Следующая тема »

Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)

Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения
BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Всё таки в чём разница?Win7x86 vs Win7x64. proueccop Windows 7 1 29.12.2010 00:40
Есть ли вообще таки программы которые создают иконки групп для сайта? Айдар5 Программы 0 26.09.2010 23:10
Так есть всё-таки сервик пак 4 или нету ? дормидонд Windows XP 2 28.05.2010 10:41
Это фича от мелкомягких или все таки вирь? Iljeben Windows XP 4 28.02.2010 14:14
И все таки мы тормозим. Shurikvip Windows XP 10 22.02.2010 01:41
К концу года на рынки все-таки поступят первые 45 нм процессоры Intel? Антон Компьютерные новости 2 30.06.2007 22:08

Текущее время: 19:05 . Часовой пояс GMT +4. Powered by vBulletin® Version 5.8.9
Copyright ©2000 — 2016, Jelsoft Enterprises Ltd.

За что отвечает настройка CPU Clock Ratio в биосе?

что делает CPU Clock Ratio

На некоторых моделях материнских плат при входе в настройки BIOS можно встретить опцию под названием CPU Clock Ratio. Ее значение может быть как доступным для изменения, так и нет.

В зависимости от версии BIOS может иметь другие названия:

  • CPU Clock Multiplier;
  • CPU Frequency Multiple;
  • CPU Multiplier;
  • CPU Ratio;
  • Frequency Ratio;
  • Ratio CMOS Setting.

В данной статье мы расскажем для чего она нужна и стоит ли изменять ее значение.

Что это такое?

Данная настройка относится к категории опций изменения параметров центрального процессора. Если быть точнее, то CPU Clock Ratio устанавливает значение множителя частоты системной шины, что в итоге определяет рабочую частоту процессора. Говоря простыми словами – позволяет разогнать процессор, то есть увеличить его производительность.

что делает CPU Clock Ratio

1- Множитель;
2- Частота системной шины;
3- Итоговая тактовая частота процессора.

Но далеко не каждый процессор и не каждая материнская плата позволяют изменять этот множитель в большую сторону. Нередко изменение настройки CPU Clock Ratio попросту недоступно.

Если в вашем случае изменить множитель нельзя, но при этом есть другая опция под названием CPU Host Clock Control, то, переключив ее, есть большой шанс активировать изменение множителя.

Стоит ли изменять значение CPU Clock Ratio?

Прежде чем это делать, стоит более подробно ознакомиться с тонкостями разгона железа, так как зачастую у новичков он приводит к перебоям в работе компьютера, а также к перегреву, ведь увеличение мощности неизбежно ведет к большему тепловыделению.

Лучшая благодарность автору — репост к себе на страничку:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *