Multi channel concurrent wifi что это
Перейти к содержимому

Multi channel concurrent wifi что это

  • автор:

What is multi channel concurrent WiFi?

scatter network traffic over non-overlapping channels. This. work presents a novel multiple channel transmission method, called Concurrent Multi-Channel Transmission (CMCT). CMCT guarantees that the data packet transmissions are collision-free, and can be sent concurrently on different channels.

I s it possible to use multiple channels of frequency in setting up a Wi-Fi connection?

The channels used for WiFi are separated by 5 MHz in most cases but have a bandwidth of 22 MHz. As a result the Wi-Fi channels overlap and it can be seen that it is possible to find a maximum of three non-overlapping ones. 2.4 GHz Wi-Fi channels, frequencies etc, showing overlap and which ones can be used as sets.

Should I broadcast both 2.4 and 5GHz?

If you want better range, use 2.4 GHz. If you need higher performance or speed, use the 5GHz band. The 5GHz band, which is the newer of the two, has the potential to cut through network clutter and interference to maximize network performance.

What is 802.11 d enable or disable?

Disabling 802.11d prevents the country code setting from being broadcast in the beacons. When 802.11h is supported, the country code information is broadcast in the beacons. To enable 802.11d regulatory domain support, click Enabled.

Which WiFi channel is best for 2.4Ghz frequency?

The recommended channels to use on 2.4 Ghz are Channel 1, 6 & 11. As can be seen in the above diagram, these channels do not overlap into each other. In general 2.4 Ghz should be considered a legacy band for older devices that do not support 5 Ghz. It is often more crowded and less performant than 5 Ghz.

Should I combine my 2.4 and 5Ghz same SSID?

Devices can seamlessly roam to the frequency that is strongest for their current location. Older 2.4Ghz only devices will just connect to the 2.4Ghz frequency and not even see the 5Ghz frequency, so having the same SSID will work fine for them.

Should 2.4 and 5 GHz same SSID?

Pros of naming the SSIDs the same: Almost all current wireless devices support both 2.4Ghz and 5Ghz frequencies. Older 2.4Ghz only devices will just connect to the 2.4Ghz frequency and not even see the 5Ghz frequency, so having the same SSID will work fine for them.

Can router have multiple channels?

Modern routers can bind more than one channel together to get faster data. One can bind two channels together on the 2.4 GHz band, 4 channels on the 5 GHz band. Many routers do this be default. The question isn’t “which channel” (singular) but “which channels” (plural).

Which is better 5G or 2.4 G?

speed – The Major Difference between the frequency digits (2.4GHz vs. 5GHz) If you want a better and a longer range for your devices, use 2.4 GHz. If you need higher r speed and could sacrifice for range, the 5GHz band should be used.

What is concurrent multi-channel wifi3tm?

Which is the best smart thermostat for multiple zones?

What is the best smart thermostat on a budget?

What is multi channel concurrent Wi-Fi?

scatter network traffic over non-overlapping channels. This. work presents a novel multiple channel transmission method, called Concurrent Multi-Channel Transmission (CMCT). CMCT guarantees that the data packet transmissions are collision-free, and can be sent concurrently on different channels.

Does Wi-Fi use multiple channels?

S ince Wi-Fi is half-duplex, only one Wi-Fi device can transmit on a channel at a time. The more Wi-Fi devices we add to a channel, the more we reduce opportunities for each device to talk. This is known as co-channel interference.

What are overlapping Wi-Fi channels?

Adjacent-Channel interference occurs when devices from overlapping channels are trying to talk over each other. Channels that have interference from other devices are considered to be ‘crowded’. Considering the 2.4 GHz band is only 100 MHz wide, the 11 channels of 20 MHz overlap with one another.

What is the best channel for mobile hotspot?

If you want maximum throughput and minimal interference, channels 1, 6, and 11 are your best choices. But depending on other wireless networks in your vicinity, one of those channels might be a better option than the others.

What is 802.11 d enable or disable?

Disabling 802.11d prevents the country code setting from being broadcast in the beacons. When 802.11h is supported, the country code information is broadcast in the beacons. To enable 802.11d regulatory domain support, click Enabled.

Do 5GHz WIFI channels overlap?

The 5GHz channels generally don’t overlap (unlike many of the 2.4GHz ones), because in many countries contiguous channels are “bonded” to have a higher bandwidth. This means that on your router you may see that the channels are all four numbers apart.

Which WiFi channels do not overlap?

In the 2.4 GHz band, 1, 6, and 11 are the only non-overlapping channels. Selecting one or more of these channels is an important part of setting up your network correctly.

What WiFi channel am I on?

From the web page that is displayed, look for the Wi-Fi settings. The channel number should be selectable via a drop-down menu. Note that if your router does work on 2.4GHz and 5GHz, you will have to choose the channel separately for each.

Which WiFi channel should I use?

For best results, it is highly recommended to keep the 2.4 GHz channels to 1, 6, and 11, as these channel settings will allow for virtually no overlap in the WiFi signal.

Can you run 2.4 and 5GHz at the same time?

Simultaneous dual-band routers are capable of receiving and transmitting on both 2.4 GHz and 5 GHz frequencies at the same time. This provides two independent and dedicated networks which allows more flexibility and bandwidth.

What is concurrent multi-channel wifi3tm?

Can multiple Wi-Fi SSIDs operate on the same channel?

Клиенты Wi-Fi 6 AX и их проблемы

vasek00

Клиент Samsung A73 (данный аппарат Малайзия, продажа в Российском магазине, чип wifi Qualcomm) который может AX и один раз даже получилось подключиться 1х1/80 = 600Мбит и поработать.

Далее через некоторое при последующих подключениях сделать так чтоб он работал на wifi 6 c KN1011 не получается. Настройки на роутере менял каналы 36 или 52, страна Denmark/Germany/RU, WPA2-WPA3 или WPA2 не к какому результату на привели, другой клиент на Samsung подключался к роутеру на AX.

Скрытый текст

1969710281_-1.jpg.e6d91fd84e86a896ff9c1b0addc161ac.jpg1368398134_-2.jpg.514666d1c3b0d267ea7444285cd99532.jpg1518517455_-3.jpg.32b0993db75e2c50da70494045f3106f.jpg

Последнии настройки interface WifiMaster1 country-code RU compatibility N+AC+AX channel 36 channel width 40-above/80 power 50 rekey-interval 86400 no band-steering beamforming explicit downlink-mumimo uplink-mumimo downlink-ofdma uplink-ofdma up ! interface WifiMaster1/AccessPoint0 rename AccessPoint_5G description "5GHz Wi-Fi access point" mac access-list type none security-level private authentication wpa-psk ns3 *** encryption enable encryption wpa2 encryption wpa3 ip dhcp client dns-routes ip dhcp client name-servers ssid G-KN-5 wmm rrm ft mdid KN ft enable up

Если брать раннюю модель A52S (528B) c AX то в нем стоит BT/WLAN WCN6750 по service manual

Спасибо

  • 1

Почему Wi-Fi не будет работать, как планировалось, и зачем знать, каким телефоном пользуется сотрудник

Поговорим о том, что реально влияет на скорость передачи данных в современных беспроводных сетях, развенчаем пару мифов и ответим, пора ли поменять свой старенький роутер на сверкающего рогатого пришельца с MU-MIMO на борту.

Для разминки — небольшая задачка. Представьте себе беспроводную сеть Wi-Fi, состоящую из точки доступа (AP) и двух одинаковых клиентских устройств (STA1 и STA2).

Читаем надписи на коробках:
AP: 1733,3 Мбит/c
STA1, STA2: 866,7 Мбит/c

Внимание, вопрос. Оба клиента одновременно начинают загружать с сервера большой файл. На какую пропускную способность может рассчитывать каждое из устройств?

Сразу оговоримся — для простоты и наглядности мы будем называть пропускную способность (канальную скорость) просто скоростью. Да, скорость работы протоколов транспортного уровня может оказаться в два раза ниже, чем наша скорость, но вы и так всё это знаете. Сейчас о другом.

Наша задачка призвана напомнить о главном ограничении беспроводных сетей.
Общая среда передачи (shared medium) подразумевает, что в единицу времени вещать должно только одно устройство.

Это обстоятельство приводит нас к контринтуитивному ответу: несмотря на то, что точка доступа способна поддерживать 1733,3 Мбит/c, каждое из устройств будет работать, в среднем, на скорости 433,3 Мбит/c.

Куда делись оставшиеся 866,7 Мбит/c? Давайте разбираться.

Для описания принципов работы беспроводных сетей удобно использовать метрику Airtime Utilization. Она показывает, какую часть времени эфир занят передачей данных.

Теперь — внимание! Для того, чтобы развить заявленные 1733,3 Мбит/c, устройство должно единолично занимать эфир все 100% времени. При этом второе устройство (принимающее) должно также поддерживать данную скорость.

Ещё раз подчеркнём — связь между устройствами, поддерживающими разные скорости, осуществляется на скорости наименее быстрого из пары.

Всё становится грустнее, если максимум устройства, например, 72,2 Мбит/c. Занять придётся те же самые 100% эфира, но результат уже совсем не впечатляющий.

К слову, 72,2 Мбит/c — скорость не случайная. Большинство современных смартфонов на большее могут не рассчитывать, но об этом позже.

Теперь вернёмся к STA1 и STA2. По условиям они начали загружать файл на сервер одновременно. Мы помним, что в единицу времени вещать может только одно устройство.
Координирует передачу в сети Wi-Fi механизм CSMA/CA — Carrier Sense Multiple Access with Collision Avoidance. Если вкратце, его задача — последовательно дать право голоса всем устройствам, при этом, по возможности, не допустив одновременной передачи от двух и более устройств (коллизии).

Можете почитать википедию, если хотите подробностей.
А лучше — это. Или — вот, если настроены совсем серьёзно.

Причём тут Airtime Utilization? А при том, что в итоге работы CSMA/CA для данного случая каждое из двух готовых к передаче клиентских устройств получит под свои нужды примерно половину эфирного времени — или 50% Airtime.

100% Airtime — 866,7 Мбит/c;
50% Airtime — 433,3 Мбит/c на каждое из устройств.

Эта картина не поменяется, даже если точка доступа будет поддерживать все 6933,3 Мбит/c. Связь между AP и STA всегда ограничена скоростью наименее быстрого из устройств.

Можете из любопытства слегка поиграться с условиями задачи:
Изменим скорость для STA2 — 72,2 Мбит/c;
Добавим STA3, скорость — 72,2 Мбит/c.
Что осталось от заявленных 1733,3 Мбит/c?

Важное уточнение №1

Справедливости ради добавим, что данные расчёты верны при включении на БС функционала Airtime Fairness, без него всё было бы гораздо хуже — медленные клиентские устройства привели бы к максимально неэффективному распределению Airtime. Хорошо, что технологию внедрили практически все уважающие себя вендоры.

Но и тут есть нюанс: Airtime Fairness работает только в Downlink (от AP к STA). В Uplink по-прежнему царит анархия.

Важное уточнение №2

В реальной сети из-за загруженности эфира, коллизий и особенностей работы протокола максимально достижимый уровень Airtime Utilization находится в пределах от 70% до 80%.
Соответствующим образом поменяется и рассчитанная нами скорость.

К чему столь долгая прелюдия? Знайте, какие клиентские устройства используются на вашей сети. Их влияние на производительность в условиях общей среды передачи данных критически недооценено. Далее будем разбираться — насколько.

Часть 1 — Во всём виноваты клиенты

Или клиентские устройства, если угодно. Чем же они провинились и что, собственно, отличает их от точек доступа?

Всё просто. Чаще всего клиенты — компактные, автономные и мобильные. Из этого вытекают все проблемы.

Стильный металлический корпус толщиной 7 мм? Для размещения 4-х радиотрактов MIMO лучше не придумаешь.

Многопоточная передача данных и широкие каналы слишком энергозатратны? Ничего, пусть заряжают устройства несколько раз в день.

Клиенты постоянно перемещаются? Ерунда — выкрутим мощность на точках на максимум.

В подобных условиях разработчики вынуждены идти на компромиссы.

Помните могучую точку доступа (1733 Мбит/c) из вступления к статье? Давайте пойдём ещё дальше. Стандарт 802.11ac позволяет нам разогнаться до внушительных 6933 Мбит/c.

Условия для этого следующие:

  1. 5 ГГц;
  2. 8 пространственных потоков (MIMO 8×8:8);
  3. 160 МГц — ширина канала;
  4. 256QAM — модуляция.

Для наглядности проведём мысленный эксперимент: подключим к нашей абстрактной точке вполне конкретный смартфон — iPhone 8. Посмотрим, на что он способен.

2,4 ГГц vs 5 ГГц

Многолетние наблюдения подтверждают — устройств, работающих в «пятёрке», всё больше. И это прекрасно.

Единственное достоинство 2,4 ГГц — меньшее затухание — на сегодняшний день превратилось едва ли не в недостаток.

При проектировании плотных сетей одна из задач — борьба с интерференцией. Боремся, в том числе, за счёт изоляции зон покрытия AP друг от друга. В ход идут стены, занижается мощность на передатчике, и «дальнобойность» двойки здесь явно лишняя.

Так или иначе — будущее Wi-Fi за «пятёркой», если не рассматривать уж совсем узкие кейсы.
Статистика, тем не менее, не даёт однозначно достоверных данных по распределению устройств — слишком много переменных (страна, регион, локация, мероприятие и другие).

Пожалуй, на сегодняшний день можно осторожно говорить, что в России мы достигли соотношения 50/50 по поддержке в клиентских устройствах диапазона 5 ГГц.

Как будет в вашей сети — другой вопрос.
Наш воображаемый iPhone 8, кстати, «пятёрку» поддерживает, ну и хорошо.

MIMO

Возможность одновременно передавать несколько потоков данных в едином частотном канале появилась ещё в 802.11n. Однако, воз и ныне там:

  • MIMO 8×8:8 клиенты пока не поддерживают. Совсем;
  • Практически полное отсутствие клиентских устройств с MIMO 4×4:4 — смотри комментарий ниже;
  • Топовые ноутбуки, поддерживающие MIMO 3×3:3;
  • Топовые смартфоны и планшеты, поддерживающие MIMO 2×2:2;
  • Абсолютное большинство устройств — SISO 1×1:1.

MIMO, SISO — что это, вообще, такое? И что за цифры?

SISO (Single Input Single Output) — устройства с одним входным и одним выходным трактами. С них всё начиналось.

MIMO (Multiple Input Multiple Output) — соответственно, множественные входные и выходные каскады. Благодаря MIMO, появилась возможность передавать в одном частотном канале несколько полезных сигналов.

MIMO 4×4:4 значит [4 передающих тракта]x[4 приёмных тракта]:[4 пространственных потока].
MIMO 4×4:3 — бывает.
MIMO 3×3:4 — не бывает.

Точка доступа с MIMO 4×4:4 позволяет, по сути, увеличить скорость передачи данных в 4 раза. Разумеется, если оба устройства (ТД и клиент) обладают равными способностями.

Клиентские устройства с MIMO 4×4:4 начали появляться на рынке совсем недавно. В основном это выделенные адаптеры Wi-Fi, но недавно нас ошарашил Samsung, заявив в описании к своему новому Galaxy Note 9 — MIMO 4×4. Очень некстати, ведь мы хотели написать, что мобильных устройств с подобными характеристиками на рынке пока нет.

В связи с этим — конкурс.

Условия

Нам нужен Association Request от Galaxy Note 9 (или любого другого смартфона), подтверждающий поддержку передачи четырёх пространственных потоков. Первый приславший на wireless@comptek.ru PCAP-файл, содержащий указанный фрейм, получит отличный подарок от CompTek.

Важное условие — снять трафик нужно самостоятельно. Можем попросить фото устройства 🙂

Как говорят — исключения подтверждают правило.

Устройств с MIMO 4×4:4 — практически нет. MIMO 3×3:3 — удел редких Macbook Pro. MIMO 2×2:2 — в топовых смартфонах и планшетах. Статистическое большинство — устройства, не поддерживающие MIMO.

Мы не будем как большинство. Наш iPhone 8 — топовый смартфон, поддерживающий передачу аж двух пространственных потоков.

Откуда мы это узнали — важный вопрос. Расскажем в последней части статьи.

Как мы помним, связь между устройствами, поддерживающими разные скорости, осуществляется на скорости наименее быстрого из пары.

Вжух — и осталось 1733,3 Мбит/c. Грустно. Но весело — это ведь почти два гигабита!

Математика

В случае с пространственными потоками (Spatial Streams) всё просто.
Их число — это множитель.
Берём базовую скорость для SISO (с учётом ширины канала) и умножаем на число пространственных потоков (SS).
6933 ~ 866.7×8 (SS=8)
1733.3 ~ 866.7×2 (SS=2)

Если лень считать — просто воспользуйтесь таблицей.

Ширина канала

802.11ac позволяет нам использовать каналы шириной в 160 МГц.
Пожалуйста, не делайте этого.

Более того, каналы в 80 МГц также категорически не рекомендованы к использованию.

Ещё раз:

Всё дело в том, что, расширяя полосу, мы, по сути, распахиваем ворота для интерференции всех мастей — портим эфир и себе, и соседям.

Мы не будем подробно разбирать, почему так происходит — это тянет на отдельную статью, однако можете самостоятельно ознакомиться с рекомендациями и Best practice guides ведущих вендоров — только 20 МГц, за редкими исключениями.

40 МГц допускается только в “пятёрке”, в случае, если плотность клиентов и обстановка в эфире позволяет.

Но мы ведь оптимисты — будем считать, что наша сеть именно такая.
Итак, от 1733,3 Мбит/c остаётся 400 Мбит/c — для канал шириной 40 МГц.

Математика

С шириной канала немного интереснее. Множители следующие:
×2.1 (40 МГц)
×4.5 (80 МГц)
×9.0 (160 МГц)

За базовую скорость можете взять 96,3 Мбит/c (20 МГц, 1SS, Short Guard interval, 5/6 coding rate).

1733.3 ~ 96.3×9×2 (160 МГц, 2SS)
400 ~ 96.3×2.1×2 (40 МГц, 2SS)

Нелинейные коэффициенты — потому что при объединение каналов удаётся задействовать служебные пограничные OFDM-поднесущие.

Жаль, что в реальной сети вреда от широких каналов больше чем пользы.

Не забываем про удобную таблицу.

Ок, уже не так впечатляет, но всё равно неплохо, да?

P.S.: Если вы живёте в лесу и очень хорошо понимаете, что делаете — хорошо, включите 160 МГц. Не факт, что будет толк. Например, пресловутый iPhone 8 такую ширину канала не поддерживает, хотя выпущен всего год назад.

Читайте до конца, чтобы узнать, на что способно ваше устройство.

Модуляция

Любопытный факт: клиентские устройства — основные источники интерференции в сети.
К чему это? А к тому, что даже идеально спланированная и настроенная сеть не гарантирует работу на максимальных модуляциях, ведь 256QAM предъявляет очень высокие требования к качеству сигнала — RSSI и SNR.

Про RSSI мы ещё поговорим, а SNR напрямую страдает от клиентов со всенаправленными антеннами — таких мобильных и непредсказуемых. Ну, и не только от них, разумеется.

Как результат — рассчитывайте, что большую часть времени клиенты будут использовать менее требовательную модуляцию. Например, 64QAM.

В нашем эксперименте это безжалостно снижает скорость до 300 Мбит/c.

Математика
Зачем вам всё это? Просто воспользуйтесь таблицей.

Что касается RSSI — то это наш любимый параметр. В стандарте 802.11 никаких описаний и требований к нему нет, поэтому каждый вендор видит данную метрику по-своему. Соответственно, разные клиентские устройства будут показывать разный RSSI в одном и том же месте.

Вы, кстати, по какому уровню планируете? -67 дБм? А для какого устройства?

Но и это ещё не всё

Оказывается, разные устройства одной модели могут по разному оценивать уровень приёма.

Для тех, кто готов во всём идти до конца — пугающий подкаст.
А вот сайт, где можно полюбоваться на собранные по теме данные.

Подытог №1

Даже при весьма оптимистическом сценарии клиент получит всего 300 Мбит/c пропускной способности — вместо 6933 Мбит/c. И это в случае, если клиент всего один! Много таких сетей знаете?

Вспоминаем задачки. Чем больше клиентов — тем хуже. Не хотели расстраивать раньше времени, но зависимость нелинейная. С ростом числа устройств в сети увеличивается процент оверхеда.

Вот каким правилом предлагает пользоваться уважаемый Devin Akin в своей статье о реальной пропускной способности в Wi-Fi

  • Один клиент: пропускная способность = 0,5 × (MCS rate);
  • Небольшое количество клиентов: пропускная способность на одно устройство = 0,45 × (MCS rate) / (количество пользователей);
  • Большое количество клиентов, высокие нагрузки на сеть: пропускная способность на одно устройство = 0,4 × (MCS rate) / (количество пользователей);

Итог: производительность сильно зависит от подключенных клиентов. Скорее всего, их способности будут весьма ограниченными.

Оптимистичный сценарий —300 Мбит/c (5 ГГц, 40 МГц, 2SS, 64QAM).
Реалистичный сценарий — 72 Мбит/c (2,4 или 5 ГГц, 20 МГц, 1SS, 64QAM).

Часть 2 — Что ещё не так с клиентскими устройствами

Да, всё только начинается.

Можно выделить три крупных проблемы:

  • Многообразие;
  • Непредсказуeмость;
  • Уязвимость.
Многообразие

Помните наш iPhone 8? Хороший телефон, кстати. А знаете, что Apple перестала получать сертификацию Wi-Fi Alliance начиная с iPhone 6?
Можете проверить сами — информация открытая.. Заодно напишите в комментариях о других удивительных открытиях.

Что, собственно, за организация — Wi-Fi Alliance?
Ребята пытаются следить за порядком в зоопарке. Значок Wi-Fi Certified означает, что устройство было проверено на соответствие основным пунктам стандарта 802.11. Проверка ведётся в аккредитованных лабораториях, всё более-менее серьёзно.

Почему возникла подобная необходимость?
Для того, чтобы обеспечить совместимость миллионам разнообразных устройств, работающим на разных чипсетах и разработанных людьми, отличающимися разной степенью квалификации и моральными ориентирами.

Помогло?
Не очень. Как показывает практика, каждый вендор имеет своё уникальное видение и позволяет себе отступать от стандарта (из лучших побуждений, разумеется).

Один из забавных примеров — прошлогодний KRACK. Не все устройства были подвержены уязвимости, так как многие производители по-своему интерпретировали процедуру обмена ключами. В частности — как вести себя в случае отсутствия ответа на третье сообщение последовательности 4-Way Handshake. Почитайте подробнее, если интересно.

Что в итоге?
Зоопарк.

Проще всего, по понятным причинам, с Apple. Хотя они и не сертифицируют свои новинки, парк устройств всё-таки ограничен. Поэтому можно протестировать поведение в тех или иных сценариях.

Дальше идёт Android. Тут многое зависит от производителя, но в целом — ещё больше неизвестных. Добавьте сюда китайцев.

На этом идеи по классификации заканчиваются. Операционные системы, драйвера, legacy-устройства, мультиварки, дверные замки, камеры видеонаблюдения — BYOD и IoT во всей красе.

Проблема усугубляется тем, что многие критические решения клиентские устройства принимают самостоятельно, напрямую повлиять на них нельзя.
Подключиться к «пятёрке» или к «двойке»?
Произвести роуминг или остаться на старой AP?
На какой модуляции работать?

Об этом подробнее в следующей главе.

Непредсказуемость

Wi-Fi устроен так, что клиентские устройства стараются самостоятельно справиться с возникающими трудностями. Не всегда эти решения оптимальны.

Если устройству кажется, что лучше сидеть на шестом канале с уровнем -85 дБм, чем переподключиться к соседней точке с уровнем -50 дБм, работающей в свободной «пятёрке» — значит, так оно и будет.

Эффективных механизмов, позволяющих прямо управлять поведением клиентских устройств, нет. В этом отличие, например, от сотовой связи.

Вы возразите — а как же 802.11k (Radio resource measurement enchancements) и 802.11v (Wireless network management), принятые в 2008 и 2011 году соответственно?

Данные стандарты теоретически направлены на решение проблемы. Практически — ничего не работает.

Да, точка может отправить Load Balancing Request — вежливо попросить клиента произвести роуминг. Удовлетворять данную просьбу никто не обязан. Более того, клиентов, поддерживающих 802.11k и v, до сих пор мало.

Основное применение описанных выше стандартов — помощь в быстром роуминге механизму 802.11r (Fast BSS transition). Клиент получает список ближайших AP, на которые ему стоило бы переподключиться — и уже дальше сумасбродное устройство решает, что для него лучше.

О роуминг сломано немало копий, хорошие статьи можно найти здесь, на Хабре.
Раз. Два.
Есть ещё монументальное (но незавершённое) исследование прекрасного Andrew von Nagy —
три.

Повторяться не будем, просто ещё раз подчеркнём: переключение между AP — на совести клиента. От этого и большинство проблем.

Вендоры пытаются бороться с самостоятельностью клиентов. Стандартные средства не помогают, поэтому в ход идут ухищрения. Это прямо как в книжках по бизнесу: не пытайся переубедить — сделай так, чтобы клиент сам пришёл к нужному выбору.

Так, например, работает Band Steering (механизм перевода клиентов из «двойки» в более свободную «пятёрку»):

  1. Устройство пытается подключиться к сети. Скорее всего, это будем именно 2,4 ГГц: драйверу устройства кажется, что так будет лучше — смотри, какой сильный сигнал!
  2. AP проверяет, поддерживает ли устройство 5 ГГц. Умная система постоянно ведёт учёт всех MAC-адресов, с которых рассылались запросы или производилось подключение к «пятёрке» ранее;
  3. DualBand-клиенты (поддерживающие оба диапазона) просто не получают ответа на свой запрос в диапазоне 2,4 ГГц;
  4. Так происходит несколько раз подряд, и в итоге разочарованный драйвер решает искать лучшей доли в другом диапазоне;
  5. Вуаля!

Список можно продолжать бесконечно:

  • Неожиданный и очень крепкий сон (особенности реализации PowerSave);
  • Работа на модуляциях, явно не соответствующих условиям эфира;
  • Самовольная раскраска трафика (QoS);
  • Специфическая отработка сценариев на порталах авторизации (были проблемы при подключении к Wi-Fi в общественных местах?).
Уязвимость

Как известно, безопасность системы в целом находится на уровне самого слабого из её элементов. В правильно настроенной беспроводной сети таким элементом неизбежно становится клиентское устройство. В чём проблема?

  • Отсутствуют либо ограничены ресурсы для контроля и противодействия подозрительной активности;
  • Обновления политик безопасности недоступны, либо появляются с опозданием;
  • Производители выполняют требования стандарта избирательно, отсутствует универсальность;
  • Legacy-устройства не соответствуют современным требованиям безопасности;
  • У администраторов нет контроля за клиентскими устройствами;
  • Люди — пользователи устройств — уязвимы для социальной инженерии.
  • Запрет BYOD. Сотрудникам выдаются устройства с предустановленным ПО, политиками безопасности управляет администратор;
  • MDM (Mobile Device Management), NAC (Network Access Control) и прочие решения, позволяющие, с разной степенью эффективности, контролировать устройства клиентов. Можно, например, удалённо запретить использование камеры на смартфоне.

Тема безопасности беспроводных сетей обширна. В данной статье мы ограничимся тем, что основной вектор атаки киберпреступников — так называемый low hanging fruit. Чаще всего таким фруктом становится клиентское устройство.

Зачем пытаться напрямую влезть в защищённую сеть, если достаточно получить доступ к смартфону сотрудника, который из гордости не устанавливает обновления на свою ОС?

Подытог №2

Перечисленные проблемы (многообразие, непредсказуемость и уязвимость клиентских устройств) бросают проектировщикам и администраторам беспроводных сетей серьёзный вызов.
Идеальное планирование, полноценное радиообследование и качественный монтаж не гарантируют стабильную работу сети.

Знать, какими устройствами пользуются абоненты, действительно, важно. Остаётся понять, какими характеристиками обладает то или иное устройство.

Неожиданно — это не самая простая задача.

Часть 3 — Производители что-то скрывают

Способ 1. Логичный

Казалось бы, что может быть проще — заходим на сайт производителя и смотрим на детальные спецификации устройств.

Попробуем на примере привычного iPhone 8:

На сайте Apple.

802.11ac Wi-Fi with MIMO… Не очень-то информативно. Сколько пространственных потоков? Какая максимальная ширина канала? Есть ли поддержка 802.11r, k, v? MU-MIMO?

Samsung делится информацией о своём Galaxy S9 несколько охотнее:

На сайте Samsung.

Даже если отбросить загадочную модуляцию 1024QAM (официально она появится только в 802.11ax), мы по-прежнему знаем об устройстве слишком мало.

Степень открытости производителей варьируется в широких пределах — есть и приятные исключения. В основном же во внутреннюю кухню никого не пускают (снова ради нашей пользы, разумеется), ведь многие знания — многие печали.

С этим согласны не все.

Способ 2. Практичный

Недовольные пользователи уже давно ведут собственные базы, куда заносят добытые характеристики устройств.

Здесь можно найти следующую информацию:

  • Список доступных устройству каналов;
  • Поддерживаемые стандарты;
  • Количество пространственных потоков;
  • Поддержка MU-MIMO;
  • Максимальная мощность передатчика.
Способ 3. Для гиков

Всё, что нужно — это перехватить обмен сообщениями между абонентом и AP, сопутствующий первоначальному установлению соединения. Данный трафик не шифруется, однако сложности возникнуть могут — не все Wi-Fi адаптеры позволяют «сниффать» 802.11-фреймы. Операционные системы также могут в разной степени облегчить, либо усложнить задачу.
Тема великолепно гуглится, поэтому ссылок давать не будем.

Счастливчики смогут наблюдать следующую картину:

Тут есть всё, друзья.
Из любопытного — тот самый, уже надоевший, iPhone 8 не поддерживает MU-MIMO. Но не будем портить вам удовольствие.

Кстати, готовые PCAP-файлы, полученные пользователями, можно скачать на том же самом clients.mikealbano.com

Способ 4. Бонусный

Есть ещё один замечательный способ узнать всю подноготную устройства. Что примечательно — без регистрации и SMS.

Все продаваемые на территории США устройства обязаны получить сертификацию от FCC — Federal Communications Commission (Федеральная Комиссия по Связи). В результате устройству присваивается FCC ID — уникальный номер, через который можно получить огромный объём информации прямо на сайте FCC.

Сам код (FCC ID) часто можно найти на устройстве, либо на коробке от него. В крайнем случае, поможет интернет.

Код состоит из двух частей: Grantee Code и Product Code. Вводите, как на картинке:

Мы получаем доступ к обширному архиву документов с данными, использованными во время сертификации. Доступны даже внутренние фотографии устройства — в некоторых случаях можно даже разглядеть модели чипов.

Обратите особое внимание на файл SAR Report — на основании данного отчёта можно не только определиться с толщиной шапочки из фольги, но и получить подробную информацию о характеристиках устройства. Бинго!

Подытог №3

Производители не спешат раскрывать полную информацию о характеристиках клиентских устройств. Тем не менее, благодаря активности сообщества, открытым источникам и собственной настойчивости, можно получить все необходимые данные.

Заключение

Зачем же знать, каким телефоном пользуется сотрудник? И пора ли менять свой старенький роутер?

Разумеется, всё зависит от задач. Если вы хотите строить надёжные и предсказуемые сети — отмахнуться от клиентского оборудования не получится. Учитывайте его особенности при планировании и обслуживании — будете вознаграждены снижением расходов и ростом удовлетворённости пользователей.

Всё сказанное не отменяет необходимости в использовании качественных точек доступа: многие наработки ведущих вендоров действительно эффективны — читайте наш блог, чтобы быть в курсе.
И ещё раз — учитывайте характеристики клиентов, чтобы тратить деньги на работающие решения.
Надеемся, что эта статья вам поможет.

Автор: Леонид Теканов, инженер беспроводного отдела CompTek.
Презентация по мотивам статьи прошла 25.10.2018 на нашей ежегодной конференции «БЕСЕДА». Не пропустите следующую.

Полезные ресурсы:

CWNP — если хочется не только хорошо разбираться в беспроводных сетях, но и получить официальное признание в виде сертификата;

Revolution Wi-Fi — сайт Andrew von Nagy — авторитетного товарища, подарившего миру удобнейший Revolution Capacity Planner;

Divergent Dynamics — сайт уважаемого Devin Akin, бескомпромиссного эксперта и автора множества ценных статей;

WLAN Professionals — детище Keith Parsons — настоящего ветерана Wi-Fi. Множество полезных материалов и целая ежегодная конференция для тех, кто настроен серьёзно;

badfi.com — хороший сайт про плохой Wi-Fi.

  • 802.11
  • wi-fi
  • беспроводные сети
  • беспроводные технологии
  • точки доступа
  • стандарты
  • Блог компании CompTek
  • Сетевые технологии
  • Беспроводные технологии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *